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Fig. 1. We propose a novel approach that enables physically simulated humanoids to learn a variety of basketball skills from human-object demonstrations,
such as shooting (blue), retrieving (red), and turnaround layup (yellow). Once acquired, these skills can be reused and combined to accomplish complex tasks,
such as continuous scoring (green), which involves dribbling toward the basket, timing the dribble and layup to score, retrieving the rebound, and repeating.
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Mastering basketball skills such as diverse layups and dribbling involves com-
plex interactionswith the ball and requires real-time adjustments. Traditional
reinforcement learning methods for interaction skills rely on labor-intensive,
manually designed rewards that do not generalize well across different skills.
Inspired by how humans learn from demonstrations, we propose SkillMimic,
a data-driven approach that mimics both human and ball motions to learn
a wide variety of basketball skills. SkillMimic employs a unified configu-
ration to learn diverse skills from human-ball motion datasets, with skill
diversity and generalization improving as the dataset grows. This approach
allows training a single policy to learn multiple skills, enabling smooth skill
switching even if these switches are not present in the reference dataset.
The skills acquired by SkillMimic can be easily reused by a high-level con-
troller to accomplish complex basketball tasks. To evaluate our approach, we
introduce two basketball datasets: one estimated through monocular RGB
videos and the other using advanced motion capture equipment, collectively
containing about 35 minutes of diverse basketball skills. Experiments show
that our method can effectively learn various basketball skills included in the
dataset with a unified configuration, including various styles of dribbling,
layups, and shooting. Furthermore, by training a high-level controller to
reuse the acquired skills, we can achieve complex basketball tasks such as
layup scoring, which involves dribbling toward the basket, timing the dribble
and layup to score, retrieving the rebound, and repeating the process. Project
page and video demonstrations: https://ingrid789.github.io/SkillMimic/
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1 INTRODUCTION
Basketball, as a collection of highly dynamic, complex, diverse, and
precise object-interaction skills, exemplifies the pinnacle of human
athleticism and control capabilities. Professional basketball players
spend extensive time practicing fundamental skills such as shoot-
ing and dribbling, which they flexibly utilize to score during games.
These basketball skills typically involve not only isolated bodymove-
ments but also interactions with the ball, requiring real-time adjust-
ments based on the state of the object to achieve precise control.
Current state-of-the-art methods apply reinforcement learning to
mimic isolated body movements, combining these motion priors
with manually designed skill rewards to learn interaction skills,
such as striking pillars [Peng et al. 2022], playing tennis [Zhang
et al. 2023b], climbing ropes [Bae et al. 2023], and carrying boxes
[Hassan et al. 2023]. However, designing these skill rewards is labor-
intensive and difficult to generalize across different skills. Given the
complexity and diversity of basketball skills, creating skill rewards
for each basketball skill demands significant engineering effort. Con-
sequently, existing methods fail to provide a unified learning frame-
work for a single policy to learn diverse basketball skills, let alone
the challenge of reusing and composing these skills to accomplish
more complex tasks, such as continuous scoring.

How can a simulated humanoid learn a wide variety of reusable
basketball skills in a simple and scalable manner? We can draw in-
spiration from the way humans learn basketball skills from demon-
strations. Most basketball players, even without formal coaching,
can master various skills by watching basketball videos and practic-
ing diligently. During this learning process, individuals adjust their
body movements to align with both the reference body motions
and the reference ball movements they observe. This paradigm of
learning skills from demonstrations allows a basketball player to
acquire a set of reusable basketball skills and flexibly combine them
for further purposes.

Inspired by these observations, we propose a data-driven method
called SkillMimic, which simultaneously mimics human and object
motions and their contacts to learn interaction skills. SkillMimic
can learn various basketball skills purely from human-ball motion
datasets, such as diverse styles of shooting, layups, and dribbling
skills, and even a robust pickup skill that enables picking up balls
in random locations and motions. Notably, SkillMimic uses the
exact same configuration to learn different skills, with identical
hyperparameters. This allows us to train a single policy to learn
multiple skills and achieve smooth skill switching, even if these
switches are not present in the reference dataset. By training a
high-level policy to reuse these learned skills, we can accomplish

challenging high-level tasks such as scoring, which requires the
humanoid to composite diverse basketball skills to score accurately.
To evaluate our method, we introduce two basketball datasets.

The first dataset, BallPlay-V, uses a purely visual approach, em-
ploying neural networks to estimate the motion of players and
basketballs from RGB videos, and includes eight basic basketball
skills. The second dataset, BallPlay-M, utilizes advanced optical mo-
tion capture equipment to record the movements of both players
and balls, encompassing approximately 35 minutes of comprehen-
sive basketball skills. Experiments on BallPlay-V demonstrate that
our method exhibits robust performance against data inaccuracies.
In BallPlay-M, our system, SkillMimic, successfully learns various
reusable basketball skills within a single policy using a unified con-
figuration. By additionally training a high-level controller to flexibly
compose the skills acquired by SkillMimic, we can efficiently com-
plete complex tasks such as directional dribbling and layup scoring.
Compared to previous methods, our approach offers significant ad-
vantages in simplicity and efficiency in learning basketball skills
and complex basketball tasks.

Specifically, our contributions are as follows:

• SkillMimic: A data-driven paradigm for learning reusable
interaction skills, capable of learning diverse basketball skills
in a unified manner. It supports joint learning and smooth
switching of skills, with skill diversity and generalization
improving as the dataset grows.

• Contact Graph: We propose a simple and general contact
modeling method that applies to diverse skills, called the
contact graph. A Contact Graph Reward (CGR) is designed to
enable precise contact imitation, which proves to be critical
for learning precise interaction skills.

• Unified skill imitation reward: We propose a set of im-
portant designs that form a unified reward configuration for
imitation learning of various interaction skills.

• A hierarchical solution for learning complex basketball
tasks: We propose training a high-level controller to flexi-
bly compose the skills acquired by SkillMimic to accomplish
challenging high-level tasks.

• BallPlay Datasets: We introduce two basketball datasets to
facilitate research on basketball skill learning.

2 RELATED WORK

2.1 Human Motion Imitation and Skill Learning
Mimicking human motion for robot control is an efficient method of
learning humanoid skills. DeepMimic [Peng et al. 2018], a pioneer
in this field, uses imitation learning to perform a variety of highly
dynamic skills, including backflips, cartwheels, and running. The in-
troduction of Generative Adversarial Imitation Learning (GAIL) [Ho
and Ermon 2016] into humanoid imitation learning by AMP [Peng
et al. 2021] lessens constraints on data alignment, thus enhancing its
versatility. ASE [Peng et al. 2022] further amplifies motion diversity
in GAIL training, incorporates a pre-trained low-level policy to ac-
quire locomotion skills, and deploys a high-level policy to repurpose
these locomotion skills for specific tasks, such as striking pillars
at random locations. This methodology is subsequently expanded
in numerous efforts to augment condition and text control [Dou
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et al. 2023; Juravsky et al. 2022; Pan et al. 2024; Ren et al. 2024b;
Sun et al. 2023; Tessler et al. 2023; Zhu et al. 2023], as well as to
design automated rewards [Cui et al. 2024]. This collection of stud-
ies employs imitation learning to broaden the scope of data-driven
skill acquisition, enabling the control and reuse of these learned
skills for high-level tasks. However, a limitation of these studies is
their exclusive focus on learning isolated locomotion skills through
imitation. This requires additional pipeline and reward design for
learning interaction skills, even for relatively simple ones, such as
moving boxes [Hassan et al. 2023] or striking pillars [Peng et al.
2022]. In contrast, our approach achieves unified learning of di-
verse basketball interaction skills without the need for skill-specific
reward design and hyperparameter tuning.

2.2 Generating Human-Object Interactions
Owing to the complex dynamics involved in diverse interactions,
the generation of interaction for simulated humanoids has long
posed challenges in the fields of graphics and robotics. Early studies
often relied on manually designed control structures. For example,
Hodgins et al. [Hodgins et al. 1995] implement a variety of sports
interactions, including running, bicycling, and vaulting, through
the use of manually designed state machine controllers. Yin et al.
[Yin et al. 2007] use finite-state machines to generate a large variety
of gaits. Coros et al. [Coros et al. 2010] utilize an inverted pendulum
model to control foot placement, thereby achieving a variety of
gait controls. With the advancement of machine learning, deep
reinforcement learning [Arulkumaran et al. 2017] has been widely
employed in character control, giving rise to an array of methods
based on policy network control. These methods have been applied
to a range of challenging activities, such as basketball [Liu and
Hodgins 2018], skateboarding [Liu and Hodgins 2017], and cycling
[Tan et al. 2014], etc. The integration of imitation learning further
simplifies the learning of interactions, and this data-driven learning
paradigm significantly lessens the need for intricate expert design.
Zhang et al. [Zhang et al. 2023b] propose a framework to learn
diverse tennis skills from broadcast videos. Bae et al. [Bae et al. 2023]
incorporatemultiple part-wisemotion priors for diverse whole-body
interactions, such as climbing ropes and weightlifting. Similarly,
Braun et al. [Braun et al. 2023] develop a framework for synthesizing
whole-body motions for dexterous grasps.

A closely related work is [Zhang et al. 2023a], where an interac-
tion graph [Ho et al. 2010] that represents the relative motions is
proposed to learn the simulated multi-character interaction. How-
ever, its kinematic-only rewards fail to measure correct contacts
and are unstable in learning diverse interactions. Instead, our pro-
posed contact-aware imitation rewards prioritize contact learning
and significantly improve the success rate. Additionally, a policy
trained by [Zhang et al. 2023a] is limited to strictly mimicking a
single reference clip during testing, which is insufficient for it to
be considered a skill. In contrast, our method can train on multiple
clips and learn generalizable and controllable skills beyond mere
imitation. Another highly related work is [Braun et al. 2023], a
framework for physically plausible whole-body grasping. Similar
to previous kinematics-based grasping synthesis methods [Ghosh
et al. 2023; Wu et al. 2022], they design skill-specific contact re-
wards as guidance for learning grasp skills. However, the method

contains multiple networks and training rounds with pre-trained
modules dedicated to the grasp skills. Beyond grasp, our method
covers diverse basketball interaction skills, within a simple unified
framework, and without designing skill-specific rewards.

In addition to physics-based methods, a multitude of interaction
generation approaches rooted in kinematics are flourishing [Jiang
et al. 2023, 2024; Li et al. 2023a,b; Starke et al. 2020, 2021; Xu et al.
2023, 2024]. These methods typically use networks to predict HOI
states without incorporating physical simulations. Consequently,
the generated interactions often lack physical authenticity and de-
mand large volumes of data.

3 PRELIMINARIES ON REINFORCEMENT LEARNING
Our method is based on reinforcement learning, where the agent in-
teracts with the environment according to a policy to maximize
the expected return. The basic task is formulated as a Markov
Decision Process (MDP) defined by the tuple M = {𝒔, 𝒂,𝒇 , 𝑟 , 𝛾}
of states, actions, transition dynamics, reward function, and dis-
count factor. At each time step 𝑡 , the agent takes the system states
𝒔𝑡 as input and outputs an action 𝒂𝑡 by sampling the policy dis-
tribution 𝝅 (𝒂𝑡 |𝒔𝑡 ). The action 𝒂𝑡 will result in a new state 𝒔𝑡+1
through physical simulation 𝒇 (𝒔𝑡+1 |𝒂𝑡 , 𝒔𝑡 ). Then a reward 𝑟𝑡 =

𝑟 (𝒔𝑡 , 𝒂𝑡 , 𝒔𝑡+1) is calculated, and the goal is to learn a policy that
maximizes the expected return R(𝝅) = E𝑝𝝅 (𝝉 )

[∑𝑇−1
𝑡=0 𝛾𝑡𝑟𝑡

]
, where

𝝉 = {𝒔0, 𝒂0, 𝑟0, ..., 𝒔𝑇−1, 𝒂𝑇−1, 𝑟𝑇−1, 𝒔𝑇 } represents the trajectory,
𝑝𝝅 (𝝉 ) is the probability density function of the trajectory. 𝑇 de-
notes the time horizon, and 𝛾 ∈ [0, 1] is a discount factor. To enable
skill control, we optionally provide the policy with extra conditions
𝒄 , yielding a variant policy 𝝅 (𝒂𝑡 |𝒔𝑡 , 𝒄).

4 BALLPLAY DATASET
To address the scarcity of basketball HOI data and facilitate research
on basketball skill learning, we introduce two datasets: one based on
monocular vision estimation and the other using multi-view optical
motion capture systems.

4.1 BallPlay-V
The BallPlay-V dataset applies a monocular annotation solution
to estimate the high-quality human SMPL-X [Pavlakos et al. 2019]
parameters and object translations from RGB videos. However, an-
notating these videos with high-speed and dynamic movements
and complex interactions in the 3D camera coordinate is quite chal-
lenging. Inspired by the whole-body annotation pipeline of Motion-
X [Lin et al. 2023], our automatic annotation additionally introduces
depth estimation [Bhat et al. 2023], semantic segmentation [Ren
et al. 2024a], to obtain high-quality whole-body human motions and
ball motions. The BallPlay-V dataset contains eight basketball skills,
including back dribble, cross leg, hold, fingertip spin, pass, backspin,
cross, and rebound.

4.2 BallPlay-M
Although BallPlay-V can acquire HOI data conveniently from RGB
videos, its accuracy is limited due to significant depth estimation
errors. Additionally, it struggles with occlusion issues, making it
difficult to capture complex layup and dribbling data. To achieve
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Fig. 2. Concept of SkillMimic. We define a skill as a specific set of Human-
Object Interaction (HOI) state transitions that align with the intended skill
semantics. These state transitions can be derived from capturing real-world
skills into HOI motion clips. If a simulated humanoid canmanipulate objects
such that the resulting HOI state transitions closely match those of the
reference, we consider the humanoid to have successfully learned the skill.

more comprehensive and accurate basketball data, we create the
BallPlay-M dataset using optical motion capture equipment. This
dataset comprises 35 minutes of diverse human-basketball interac-
tions, including 39 dribble clips, 131 pickup clips, 8 layup clips, 13
shot clips, 10 pass clips, 16 getup clips, and 21 miscellaneous clips.
During the capture process, optical markers are attached to both the
player and the basketball to track body and ball movements. The
player also wears gloves equipped with inertia sensors to estimate
finger movements. Consequently, the player is parameterized as
a skeleton with 52 joints (156 DOFs). We calculate and record the
root rotation, root translation, joint positions, and joint rotations
sequentially. The ball is parameterized as a sphere, with its rotation
and center position recorded. All data are captured at 120 fps.

5 SKILLMIMIC
In this section, we introduce a unified data-driven framework for
simulated humanoids to learn various reusable basketball skills. We
begin by introducing how we define skills with Human-Object In-
teraction (HOI) data (Sec. 5.1). Next, we explain how to learn diverse
skills by imitating HOI data (Sec. 5.2) and discuss the designing of a
unified HOI imitation reward (Sec. 5.3). Finally, we demonstrate how
the learned skills can be reused to perform complex tasks (Sec. 5.4).

5.1 Defining Skills Using Data
We propose a data-driven approach to defining skills as collections
of Human-Object Interaction (HOI) state transitions that align with
the intended skill semantics. For instance, the skill of "picking up
balls from various positions" can be encapsulated by various HOI
motion clips, each capturing a unique instance of the action. If we
consider each frame of HOI data as a state, these clips collectively
form a collection of state transitions that represent the skill.

Unlike defining skills using explicit rules, our approach uses data
to represent skills. This makes it easier to define skills that are
difficult to describe with rules, such as various basketball skills. In
addition, by collecting richer skill data samples, the skill coverage
can be more completely represented. For example, a pickup skill
defined by 100 different HOImotion clips will bemore representative
than one defined by a single clip.

5.2 Learning Skills by Imitation
Considering skills defined by a set of reference HOI state transi-
tions, if a humanoid can manipulate objects such that its HOI state
transitions closely resemble those of the reference, we consider
the humanoid to have successfully learned the skill. Based on this
concept, we propose a method for learning interaction skills by
imitating HOI state transitions, which we call SkillMimic. Fig. 2
illustrates the concept of SkillMimic. Unlike previous approaches
[Peng et al. 2018, 2022, 2021; Zhang et al. 2023b] that require manu-
ally designed skill rewards for each interaction skill, SkillMimic is
fully data-driven, skill-agnostic, and scalable, making it capable of
learning a wide range of basketball skills within a unified solution.
Fig. 6 shows diverse basketball skills acquired using SkillMimic.
Fig. 8 and Fig. 9 illustrate how the performance of the pickup skill
improves as the amount of reference data increases.

Thanks to the exploratory nature of deep reinforcement learning,
the skills learned through SkillMimic can quickly switch fromminor
out-of-domain states to learned state distributions, leading to skill
generalization and zero-shot skill switching.

5.2.1 Training. Fig. 3 (b) shows the training pipeline of SkillMimic.
Given an HOI dataset with diverse skill-labeled clips (Fig. 3 (a)),
SkillMimic trains by randomly selecting a frame from a clip cor-
responding to a chosen skill to initialize the humanoid and object
states. The state 𝒔𝑡 (Sec. 5.2.2) and skill label 𝒄 𝑗 are input into the
policy, which predicts actions (Sec. 5.2.3) that are then simulated to
produce the next state 𝒔𝑡+1. A unified HOI imitation reward (Sec. 5.3)
is designed to measure the consistency between the simulated state
transitions and the reference transitions. When the simulation trig-
gers specific conditions, such as falling or reaching the maximum
simulation length, the environment resets, and the process repeats.
After training converges, the policy enables the humanoid to execute
skills that closely mirror the reference demonstrations. Moreover,
since it does not rely on reference data during testing, skills can op-
erate continuously with robustness and generalization capabilities.
Our implementation is based on Isaac Gym [Makoviychuk et al.

2021], which supports the parallel execution of numerous envi-
ronments. To quickly adapt to the diverse states encapsulated in
the dataset, we apply the reference state initialization (RSI) [Peng
et al. 2018] independently for each environment. Since clips vary in
length, the rewards at convergence can differ significantly, poten-
tially causing imbalanced skill learning. To ensure more balanced
skill learning, we set a fixed maximum simulation length, making
the upper limit of imitation rewards similar across all skills.

5.2.2 Observation. The state observed by the skill policy is not un-
der direct supervision and may theoretically encompass any infor-
mation that is available in the simulation environment. Importantly,
this information does not necessarily have to be included in the
reference HOI data. Similar to prior arts [Peng et al. 2022], we trans-
form all coordinates into the root local coordinate of the humanoid,
which aligns the data distribution and benefits the generalization
performance. For the humanoid, we observe its global root height,
local body position, rotation, position velocity, and angular velocity.
These representations form the humanoid proprioception 𝒐

𝑝𝑟𝑜𝑝
𝑡 . In

addition, we detect net contact forces 𝒐 𝑓𝑡 for all fingertips, which
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Fig. 3. Our system consists of three parts. (a) First, we capture real-world basketball skills to create a large Human-Object Interaction (HOI) motion dataset.
(b) Second, we train a skill policy to learn interaction skills by imitating the corresponding HOI data. Specifically, the policy takes as input the HOI state 𝒔𝑡
and skill label 𝒄 𝑗 and predicts the action 𝒂𝑡 . The new state 𝒔𝑡+1 is calculated by the simulator. A unified HOI imitation reward is designed to imitate diverse
HOI state transitions. (c) The third part involves training a High-Level Controller (HLC) to reuse the learned skills for complex tasks. The HLC takes as input
𝒔𝑡 and extra task observations 𝒉𝑡 , e.g., the basket position, and predicts the skill label 𝒄𝑡 to drives a pre-trained skill policy.

helps to sense contact and accelerate training. For the object, we
observe its local position, rotation, velocity, and angular velocity,
which form the object observation 𝒐𝑜𝑏 𝑗𝑡 . Finally, the state perceived
by the skill policy is

𝒔𝑡 = {𝒐𝑝𝑟𝑜𝑝𝑡 , 𝒐
𝑓
𝑡 , 𝒐

𝑜𝑏 𝑗
𝑡 }. (1)

Skill labels 𝒄 𝑗 are also used as inputs to the policy to differentiate
between various skills, which is crucial for skill reuse and switching.
We use one-hot encodings to represent the skill label.

5.2.3 Policy and Action. The policy output is modeled as a Gauss-
ian distribution with dimensions equal to the DOF number of the
humanoid robot, featuring constant variance. The mean is modeled
by a three-layer MLP consisting of [1024, 512, 512] units with ReLU
activations. We use the action 𝒂𝑡 sampled from the policy as the tar-
get joint rotations for a full set of PD controllers. The PD controllers
adjust and output the joint torques to reach the target rotations.

5.2.4 Physical Simulation of the Humanoid, Ball, and Environment.
We use Isaac Gym [Makoviychuk et al. 2021] as the physics simu-
lation platform. For GRAB [Taheri et al. 2020] and BallPlay-V, the
whole-body humanoid follows the SMPL-X [Pavlakos et al. 2019]
kinematic tree and has a total of 52 body parts and 51×3 DOF ac-
tuators where 30×3 DOF is for the hands and 21×3 DOF for the
rest of the body. For BallPlay-M, the humanoid model consists of
53 body parts and 52×3 DOF actuators, the hands having 30×3
DOF and the rest of the body having 22×3 DOF. The basketball is
modeled as a sphere with a radius of 12 cm, which is close to the

size of a real-world basketball. The restitution coefficients for the
plane and the ball are set to 0.8 and 0.81, respectively, to ensure
the ball’s bounce closely resembles real-world basketball behavior.
The humanoid’s mass is set to match that of a real player. We set
the ball’s density to 1000 kg/m3 to enhance stability and acceler-
ate training convergence, while other physical parameters remain
at their default settings. Despite being trained with fixed physical
properties, our method can withstand a wide range of changes in
physical properties during inference, such as variations in the ball’s
density, radius, and restitution, as shown in Tab. 2.

5.3 Unified HOI Imitation Reward
The design of the unified HOI imitation reward in Fig. 3 (b) is cru-
cial to the performance of learning interaction skills. This reward
function is pivotal as it must not only accurately gauge the efficacy
of skill acquisition but also avoid the incorporation of skill-specific
settings to maintain robust cross-skill generalizability.
Traditional imitation rewards often focus solely on imitating

human motions [Peng et al. 2018, 2022, 2021] or neglect interac-
tive contacts [Zhang et al. 2023a], leading to suboptimal imitation
performance and necessitating individualized hyperparameter tun-
ing. Recognizing the interlocking relationship between interaction
and contact, we propose a straightforward and universal contact
modeling approach called Contact Graph. A corresponding CG imi-
tation reward 𝑟𝑐𝑔𝑡 is designed to enhance the precision of interaction
imitation. Beyond the standard body motion imitation reward 𝑟𝑏𝑡
and object motion imitation reward 𝑟𝑜𝑡 , we incorporate a relative
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position reward 𝑟𝑟𝑒𝑙𝑡 to further improve interaction accuracy. Addi-
tionally, we propose an adaptive velocity regularization term 𝑟

𝑟𝑒𝑔
𝑡 to

suppress high-frequency jitters. These sub-rewards are multiplied
to encourage balanced learning, thereby avoiding local optima, as
justified in Tab. 1. The combination of these innovations forms a
unified reward function, enabling the learning of diverse basketball
skills in BallPlay-M with the same configuration. To conclude, the
complete HOI imitation reward is

𝑟𝑡 = 𝑟𝑏𝑡 ∗ 𝑟𝑜𝑡 ∗ 𝑟𝑟𝑒𝑙𝑡 ∗ 𝑟𝑟𝑒𝑔𝑡 ∗ 𝑟𝑐𝑔𝑡 . (2)

Next, we will explore the methodology involved in crafting these
reward functions.

5.3.1 Contact Graph. We observe that existing imitation rewards
[Peng et al. 2022, 2021; Zhang et al. 2023a] only measure kinematic
properties and are insufficient to measure precise contacts. To tackle
this problem, we propose the Contact Graph (CG) to model the
contact in general interactions and design a CG imitation reward.
As illustrated in Fig. 4, the CG is a complete graph where ev-

ery pair of distinct nodes is connected by a unique edge, defined
as G = {V, E}, where V ∈ {0, 1}𝑘 is the set of 𝑘 nodes and
E ∈ {0, 1}𝑘 (𝑘−1)/2 is the set of edges. A CG node stores a binary
value indicating whether it contacts other nodes. Each CG edge
stores a binary label that denotes the contact between two nodes,
where 1 represents contact, and 0 means no contact. CG node and
edge values are calculated frame by frame, explicitly describing the
mutual contact relationship between CG nodes at different moments.
Contacts inside a node are not considered. In practice, we can use
the nodes setV or edge set E depending on the needs.

The definitions of nodes are flexible. For example, a node can be
a single part (e.g., a fingertip), or an aggregation of multiple parts
(e.g., the whole left hand). Hinged objects can also be broken up into
finer nodes [Fan et al. 2023; Geng et al. 2023; Zhang et al. 2024]. The
definition of CG is unified for a certain scene and shared between
diverse interaction skills. For example, in basketball scenarios, we
can aggregate two hands as a node, the rest of the bodies as a node,
and the ball as a node, as illustrated in Fig. 4. This simple CG is
effective enough for learning all the basketball skills covered in
BallPlay-M. Fig. 6 shows a subset of these skills.
Theoretically, the reference CG edge values can be extracted

from accurate kinematic HOI data by calculating the mesh collision
or distances. A CG node value can be yielded by the logic "OR"
operation on all its connected edges.

5.3.2 Contact Graph Reward. Kinematic imitation rewards [Peng
et al. 2018, 2021; Zhang et al. 2023a] fall short in measuring contacts
and thus yield poor performance in HOI imitation. For example,
during the toss skill training (Fig. 5 (a)), the contact between the
right hand and the ball will in most cases cause the ball to drop,
making the kinematic rewards drastically smaller. In this case, the
policy may learn a local-optimal solution that uses the head and left
hands to stabilize the ball, as demonstrated in Fig. 5 (b). To tackle
this problem, we propose the Contact Graph Reward (CGR) as a
critical complement of kinematic imitation rewards to learn precise
contact imitation. The CG error is defined as 𝒆𝑐𝑔𝑡 = |𝒔𝑐𝑔𝑡 −𝒔𝑐𝑔𝑡 |, where
| · | calculates element-wise absolute value, 𝒔𝑐𝑔𝑡 and 𝒔

𝑐𝑔
𝑡 denotes the

Contact 
Graph

Contact 
Graph

Contact

No contact

Fig. 4. We propose the Contact Graph (CG) tomodel general contacts within
an explicitly defined scene. The node stores a binary value that denotes
whether it contacts other nodes. Each edge stores a binary value indicating
whether the two connected nodes are in contact. The node definition is
unified for a certain scene and shared between diverse interactive skills. For
example, we define three nodes: hands, hands-exclusive body, and ball, to
form a simple CG to model contacts for diverse basketball skills.

(j) Ref (k) w/o CGR on table (l) w/ CGR

(a) Ref (b) w/o CGR (c) w/ CGR

(g) Ref (h) w/o CGR (i) w/ CGR

(d) Ref (e) w/o CGR (f) w/ CGR

Fig. 5. The HOI imitation falls into kinematic local-optimal solutions with-
out Contact Graph Reward (CGR): (b) use the head to help control the ball;
(e) use the wrist to contact the ball; (h) fail to catch the object; (k) support
the table to keep balance. In comparison, the guidance of CGR effectively
yields precise interactions, as shown in (c, f, i, l).

simulated and reference CG state respectively, which can be the
nodes setV𝑡 ∈ {0, 1}𝑘 or the edge set E𝑡 ∈ {0, 1}𝑘 (𝑘−1)/2 depending
on the needs. The CGR is measured by CG error, with independent
weights on different elements:

𝑟
𝑐𝑔
𝑡 = exp(−

𝐽∑︁
𝑗=1

𝝀𝑐𝑔 [ 𝑗] ∗ 𝒆𝑐𝑔𝑡 [ 𝑗]), (3)

where 𝒆
𝑐𝑔
𝑡 [ 𝑗] is the 𝑗th element of 𝒆𝑐𝑔𝑡 ∈ {0, 1}𝐽 , a binary label

representing a contact error; 𝝀𝑐𝑔 [ 𝑗] is the 𝑗 th element of 𝝀𝑐𝑔 ∈ R𝐽 , a
hyperparameter controls the sensitivity of a contact. Fig. 5 and Tab. 1
justify the effectiveness of CGR, where experiments without CGR
show kinematic local-optimal solutions while using CGR effectively
eliminates such problems.

5.3.3 Kinematic Rewards. Kinematic imitation rewards form the
core of the HOI imitation. We design these rewards in four dis-
tinct parts: the Body Kinematics Reward 𝑟𝑏𝑡 , the Object Kinematics
Reward 𝑟𝑜𝑡 , the Relative Motion Reward 𝑟𝑟𝑒𝑙𝑡 , and a Velocity Regu-
larization term 𝑟

𝑟𝑒𝑔
𝑡 .
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The Body Kinematics Reward 𝑟𝑏𝑡 encourages the alignment of the
body’s movements with the reference data:

𝑟𝑏𝑡 = 𝑟
𝑝
𝑡 ∗ 𝑟𝑟𝑡 ∗ 𝑟𝑝𝑣𝑡 ∗ 𝑟𝑟 𝑣𝑡 , (4)

where 𝑟𝑝𝑡 , 𝑟
𝑟
𝑡 , 𝑟

𝑝𝑣
𝑡 , 𝑟𝑟 𝑣𝑡 are the humanoid position reward, rotation

reward, position velocity reward, and angular velocity reward. Each
sub-reward is calculated by computing the Mean Squared Error
(MSE) with the reference data, followed by a negative exponential
normalization. For instance, the calculation for 𝑟𝑝𝑡 is as follows:

𝑟
𝑝
𝑡 = exp(−𝜆𝑝 ∗ 𝑒𝑝𝑡 ), 𝑒

𝑝
𝑡 = MSE(𝒔𝑝𝑡 , 𝒔

𝑝
𝑡 ), (5)

where 𝒔𝑝𝑡 , is the reference humanoid body positions, 𝒔𝑝𝑡 is the simu-
lated humanoid body positions, 𝜆𝑝 is a hyperparameter that condi-
tions the sensitivity.

The Object Kinematics Reward 𝑟𝑜𝑡 ensures the object’s movements
are consistent with the reference:

𝑟𝑜𝑡 = 𝑟
𝑜𝑝
𝑡 ∗ 𝑟𝑜𝑟𝑡 ∗ 𝑟𝑜𝑝𝑣𝑡 ∗ 𝑟𝑜𝑟𝑣𝑡 , (6)

where 𝑟𝑜𝑝𝑡 , 𝑟𝑜𝑟𝑡 , 𝑟𝑜𝑝𝑣𝑡 , 𝑟𝑜𝑟𝑣𝑡 are the object position reward, rotation
reward, position velocity reward, and angular velocity reward, re-
spectively. The calculation of these sub-rewards resembles Eq. 5.

The relative motion is represented as a vector group, obtained by
subtracting the object’s position from the key body positions. The
Relative Motion Reward 𝑟𝑟𝑒𝑙𝑡 is also calculated following Eq. 5 and
is effective in constraining the relative motion between the object
and key body points to be consistent with the reference.
Lastly, a Velocity Regularization term is employed to suppress

high-frequency jitter in the humanoid when it is supposed to be
stationary:

𝑟
𝑟𝑒𝑔
𝑡 = exp(−𝜆𝑟𝑒𝑔 ∗ 𝑒𝑎𝑐𝑐𝑡 ), 𝑒𝑎𝑐𝑐𝑡 = mean

(
| |𝒔𝑎𝑐𝑐𝑡 | |2

| |𝒔𝑣𝑒𝑙𝑡 | |2 + 𝜆𝑟𝑒𝑔

)
, (7)

where 𝜆𝑟𝑒𝑔 is a hyperparameter adjusts the sensitivity, 𝒔𝑎𝑐𝑐𝑡 is the
simulated DOF accelerations of the humanoid, and 𝒔𝑣𝑒𝑙𝑡 is the refer-
ence DOF velocities.

5.4 Reusing Acquired Skills for Complex Tasks
Although the definition of skills can be quite broad, employing more
complex data to define more intricate skills introduces additional
demands for data collection. Instead, we consider leveraging the
skills acquired through SkillMimic to accomplish long-term, com-
plex tasks. Specifically, we propose training a High-Level Controller
(HLC) to reuse acquired skills for implementing complex tasks. As
depicted in Fig. 3 (c), the HLC takes as input the current HOI state 𝒔𝑡
and task observation 𝒉𝑡 , and outputs a discrete skill embedding 𝒄𝑡
that serves as inputs to a pre-trained SkillMimic policy, which subse-
quently generates actions for the humanoid. Compared to previous
hierarchical approaches that train a High-Level Controller (HLC)
to reuse motion priors [Peng et al. 2022; Zhang et al. 2023b], our
method does not require rewards designed for interactions. Instead,
simple goal-related rewards can be highly effective. This signifi-
cantly simplifies the design of task rewards and greatly accelerates
the convergence speed of training. In the following sections, we
present four representative complex tasks and our detailed solutions.
Results in Tab. 4 and Fig. 11 justify the superiority of our method.

5.4.1 Throwing. In this task, the objective is to throw the ball to
approach a certain height, grab the rebound, and keep on throwing
the ball. The goal-related task reward can be simply defined as:

𝑟
𝑡ℎ𝑟𝑜𝑤𝑖𝑛𝑔
𝑡 = exp(−|ℎ𝑏𝑎𝑙𝑙𝑡 − 2.5|), (8)

where ℎ𝑏𝑎𝑙𝑙𝑡 is the ball height.

5.4.2 Heading. This task aims to dribble the ball to approach the
target position. The task observation 𝒉𝑡 contains the target position.
We simply define the task reward as:

𝑟
ℎ𝑒𝑎𝑑𝑖𝑛𝑔
𝑡 = exp(−||𝒙𝑏𝑎𝑙𝑙𝑡 − 𝒙

𝑡𝑎𝑟𝑔𝑒𝑡
𝑡 | |2), (9)

where 𝒙𝑏𝑎𝑙𝑙𝑡 is the ball position while 𝒙𝑡𝑎𝑟𝑔𝑒𝑡𝑡 is the target position.

5.4.3 Circling. In the circling task, the objective is for the humanoid
to dribble the ball around the target position following a target
radius. The task observation 𝒉𝑡 contains the target position and
radius. The task reward can be defined as:

𝑟
𝑐𝑖𝑟𝑐𝑙𝑖𝑛𝑔
𝑡 = 𝑟 𝑣𝑡 ∗ exp(−|𝑑𝑡𝑎𝑟𝑔𝑒𝑡 − ||𝒙𝑏𝑎𝑙𝑙𝑡 − 𝒙𝑐𝑒𝑛𝑡𝑒𝑟𝑡 | |2 |), (10)

where 𝑑𝑡𝑎𝑟𝑔𝑒𝑡 is the target radius and 𝒙𝑐𝑒𝑛𝑡𝑒𝑟𝑡 is the center point
around which the humanoid is required to circle. 𝑟 𝑣𝑡 is a speed
constraint that prevents the ball from staying still, defined as:

𝑟 𝑣𝑡 =

{
1, if | |𝒗𝑏𝑎𝑙𝑙𝑡 | |2 > 0.5
0.1, else

(11)

where 𝒗𝑏𝑎𝑙𝑙𝑡 is the ball velocity.

5.4.4 Scoring. To further validate our method’s capability to com-
bine a diverse set of skills for precise operations, we consider the
scoring task. In this task, the objective is to shot the ball precisely
into a randomly positioned basket. The task observation 𝒉𝑡 contains
the basket position. The reward function consists of four parts:

𝑟
𝑠𝑐𝑜𝑟𝑖𝑛𝑔
𝑡 = 𝑟 𝑣𝑡 ∗ (𝑟ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑡 + 𝑟𝑏𝑜𝑛𝑢𝑠𝑡 + 0.2 ∗ 𝑟𝑡ℎ𝑟𝑜𝑤𝑖𝑛𝑔

𝑡 ), (12)

where 𝑟𝑡ℎ𝑟𝑜𝑤𝑖𝑛𝑔
𝑡 rewards the ball height, 𝑟ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑡 encourages the

ball to move close to the basket, 𝑟 𝑣𝑡 prevents the ball from staying
still, and 𝑟𝑏𝑜𝑛𝑢𝑠𝑡 is a bonus for a score, defined as:

𝑟𝑏𝑜𝑛𝑢𝑠𝑡 =

{
1, if scored
0, else

(13)

After only three hours of training (on a Nvidia RTX 4090 GPU), the
HLC is capable of controlling a humanoid to dribble the ball towards
the basket, execute layups at the right moments to score, retrieve
the rebound, dribble away, and repeat the scoring sequence.

6 EXPERIMENT
Our experiments are divided into two main parts. The first part
evaluates skill learning (Sec. 6.3). This includes comparisons with
existing methods, robustness testing of the acquired skills, and abla-
tion studies on the reward function designs and data volume. The
second part assesses learning complex tasks by reusing acquired
skills (Sec. 6.4), including comparisons with existing methods and a
demo of a two-player competition.
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(a) Jump Shot (b) Rebound (c) Layup (d) Turnaround Layup

(e) Dribble Left (f) Dribble Right (g) Dribble Forward (h) Dribble Turn

(i) Pass (j) Pickup (k) Cross Leg (l) Back Dribble

Fig. 6. Simulated humanoids exhibit comprehensive basketball skills. SkillMimic can teach humanoids a wide range of basketball skills using the same
configuration in a purely data-driven manner, covering almost all fundamental basketball skills. Keyframes are placed in chronological order from left to right.

6.1 Experimental Setup
We use Isaac Gym [Makoviychuk et al. 2021] as the physics simula-
tion platform. All experiments are trained on a single Nvidia RTX
3090 or 4090 GPU, with 2048 parallel environments. For GRAB and
BallPlay-V, both the simulation and PD controller operate at 60 Hz,
while the skill policy is sampled at 30 Hz. For BallPlay-M, the simu-
lation and PD controller run at 120 Hz, with the skill policy sampled
at 60 Hz. We resample the reference HOI clips to match the skill
policy frequency, and the high-level policy is sampled at 20 fps. All
neural networks are implemented using PyTorch and trained using
Proximal Policy Optimization [Schulman et al. 2017]. We use the
edge set E of the CG and calculate the CG edge values by judging
the contact force of each CG node. The setting of hyperparameters
is fixed for all experiments and can be found in the appendix.

6.2 Metrics
To evaluate the experimental performance, we consider the follow-
ing quantitative metrics:

6.2.1 Accuracy. The overall accuracy of HOI imitation, abbreviated
as Acc., is defined per frame, and deems imitation accurate when
the object position and body position errors are both under the
thresholds and the contacts are correct. The object threshold is
defined as 0.2𝑚. The body threshold is defined as 0.1𝑚. The Acc is
calculated by averaging the success values of all frames.

6.2.2 Position Error. The Mean Per-Joint Position Error (MPJPE)
of the body (𝐸b-mpjpe) and object (𝐸o-mpjpe) is used to evaluate the
positional imitation performance (in𝑚𝑚) following [Luo et al. 2023].

6.2.3 Contact Error. The contact error 𝐸cg, ranging from 0 to 1, is
defined as 1

𝑁

∑𝑁
𝑡=1MSE(𝒔𝑐𝑔𝑡 , 𝒔

𝑐𝑔
𝑡 ), where N is the total frames of the

reference HOI data.

6.2.4 Success Rate. We introduced a set of skill-specific rules to
determine the success or failure and skill executions:

• Pickup: When testing the pickup skill, we determine success
by checking if the ball is lifted above 1 m after 10 seconds.

• Dribble: We have the humanoid dribble for 10 seconds, and
if the root height of the humanoid is greater than 0.5 m and
the distance between the ball and the humanoid root is less
than 1.5 m, we consider the frame to be valid. The success
rate is calculated as the proportion of valid frames to the total
number of frames in 10 seconds.

• Layup & Shot: We consider a success if the distance between
the ball’s maximum height and the target height is less than
0.1 m, and the body root height is above 0.5 m.

• Throwing: We evaluate success by checking if the ball re-
mains above 0.3 m within 10 seconds after the first throw.

• Heading: We determine success if the distance between the
ball and the target position is less than 0.5 m.

• Scoring: We consider a success if the ball’s maximum height
is above 2.5 m, and the distance between the ball and the
target position is less than 0.3 m.

• Circling: A frame is considered valid if the distance between
the ball and the target point differs from the set radius by less
than 0.5 m and the ball’s speed exceeds 0.5 m/s. The success
rate is calculated as the proportion of valid frames to the total
number of frames in the run.
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Table 1. Ablation study on imitation reward design. We experiment on two HOI datasets, including GRAB, which contains multiple objects, and BallPlay-V,
which has significant data inaccuracies. The result highlights the importance of the CG reward and multiplication in achieving precise HOI imitation.

SkillMimic w/o Multiplication SkillMimic w/o CGR SkillMimic

Dataset Acc. ↑ 𝐸b-mpjpe ↓ 𝐸o-mpjpe ↓ 𝐸cg ↓ Acc. ↑ 𝐸b-mpjpe ↓ 𝐸o-mpjpe ↓ 𝐸cg ↓ Acc. ↑ 𝐸b-mpjpe ↓ 𝐸o-mpjpe ↓ 𝐸cg ↓
GRAB 27.0% 44.7 180.2 0.724 38.6% 91.0 180.1 0.337 95.4% 71.1 78.0 0.026
BallPlay-V 7.5% 40.1 1662.5 0.306 13.6% 88.5 155.3 0.412 82.4% 56.8 82.9 0.087

Table 2. Impact of varying physical properties on success rates. Models trained with fixed physical attributes were tested by scaling these attributes by a factor.

Ball Radius Ball Density Ball Restitution

Skill 0.5× 0.7× 0.9× 1.1× 1.3× 1.5× 0.1× 0.4× 0.7× 2× 3× 4× 0.6× 0.8× 1.2× 1.4× 1.6× 1.8×
Dribble Forward 0.0% 29.0% 84.2% 85.5% 57.2% 0.0% 0.1% 60.1% 79.5% 92.0% 33.3% 0.0% 7.0% 87.6% 87.0% 85.8% 76.1% 3.64%

Pickup 2.2% 58.7% 78.7% 79.7% 64.1% 0.4% 12.2% 78.3% 79.1% 79.1% 75.3% 17.4% 79.0% 79.6% 78.6% 79.6% 79.2% 78.9%

6.3 Evaluating Skill Learning
In this section, we comprehensively evaluate the performance of
SkillMimic in skill learning. We not only compare it with baseline
methods but also conduct robustness tests on the skills acquired by
SkillMimic. Additionally, we perform ablation studies and analyses
from multiple dimensions, including reward function design and
data volume. These experiments demonstrate the superior perfor-
mance of SkillMimic, the rationality of its design, and its potential
for further scaling up.

6.3.1 Comparing with Baselines.

Baseline Methods. We compare our proposed SkillMimic with
closely related imitation-based skill-learning methods, including
DeepMimic [Peng et al. 2018] and AMP [Peng et al. 2021], which
imitate body motion. We also create diverse versions of SkillMimic
following the concept of reward designs in DeepMimic and AMP,
dubbed SkillMimic-DM and SkillMimic-AMP, respectively. This al-
lows for a more straightforward comparison of the differences in our
reward function design. Detailed implementation of these methods
can be found in the appendix.

Datasets. We conduct experiments using data from three datasets:
GRAB, BallPlay-V, and BallPlay-M. From the GRAB S8 subset, we
select 5 cases, including grasping a cube, cylinder, flashlight, flute,
and bottle. All data from BallPlay-V are used in the experiments.
For BallPlay-M, we selected 40 pickup clips, one layup clip, one shot
clip, and one dribble forward clip. These datasets were chosen for
their representativeness and diversity, providing a comprehensive
evaluation of our method’s overall performance.

Training Details. Due to significant object and robot penetration
issues in the GRAB and BallPlay-V data, using Reference State Ini-
tialization (RSI) often causes objects to bounce away. Therefore,
for GRAB and BallPlay-V, we initialize the humanoid and object
using the first frame of the reference clip and set the maximum
simulation length to the clip length. For GRAB and BallPlay-V, we
train 1 billion samples for all experiments, use the reference state
as the condition, and only evaluate the imitation performance. For
BallPlay-M, we apply RSI with a maximum simulation length of 60.
We train approximately 0.65 billion samples for all experiments on

Fig. 7. A comparison of success rates across four typical basketball skills.
Our method (SM) significantly outperforms skill-learning methods that
only imitate body-only motions (DM and AMP). Additionally, our final
reward design (SM) achieves superior overall performance compared to
other variants (SM-DM and SM-AMP).

BallPlay-M, each requiring around 10 hours on a single Nvidia RTX
4090 GPU. The exception is the pickup skill, which includes 40 data
samples and is trained with about 3.2 billion samples.

Quantitative Results. In Fig. 7, we present the success rate on 4 typ-
ical basketball skills from BallPlay-M. We can see that DeepMimic
and AMP exhibit very low success rates in all skills. This is because
they solely imitate body movements without object perception and
constraints. When object perception and object reward functions are
introduced, the re-implementation of DeepMimic-style and AMP-
style rewards within our SkillMimic framework (SkillMimic-DM
and SkillMimic-AMP) show significant performance improvements
over their original versions, though the performance is still unstable.
This instability is because they totally rely on kinematic imitation
rewards, which do not adequately reflect the correctness of contact,
leading to kinematic local optima. In contrast, our final reward de-
sign achieves stable performance across all skills. This stability is pri-
marily because our reward function not only considers kinematics
but also explicitly models contact and uses multiplicative methods
to encourage balanced learning among various sub-rewards. Addi-
tionally, Tab. 1 presents detailed metrics of HOI imitation across
two diverse datasets, GRAB and BallPlay-V, demonstrating that our
method (SkillMimic) performs well even on datasets with kinematic
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(a) 1 Clip, 0.5% Succ. (b) 10 Clips, 12.2% Succ. (c) 40 Clips, 76.5% Succ. (d) 131 Clips, 85.6% Succ.

Fig. 8. Pickup performance with different scales of training data. We collect 1, 10, 40, and 131 pickup clips from BallPlay-M to train pickup skills using
SkillMimic. 1000 humanoids are initialized at the central, and 1000 balls are initialized at random locations 1 to 5 meters away from the center. The yellow dots
indicate successfully picked balls and the green dots represent failures. Results demonstrate improved pickup skill performance with larger datasets.

Fig. 9. Demonstration of the pickup skill learned from 40 HOI motion clips. Yellow denotes the initial frame. Left: The humanoid picks up a stationary ball
effortlessly. Middle: The humanoid intercepts a ball with random velocity. Right: The humanoid adjusts after missing the ball initially (the frame in blue) and
successfully retrieves it on the second attempt, showcasing the potential for learning robust and generalizable skills through extensive data collection.

biases. Comparatively, the absence of multiplicative rewards or CGR
leads to noticeable performance drops (SkillMimic w/o multiplica-
tion and SkillMimic w/o CGR). This is because data with kinematic
biases are more prone to kinematic local optima. Through these
comprehensive evaluations, our method shows state-of-the-art per-
formance in HOI imitation.

6.3.2 Evaluating Skill Robustness. To evaluate the robustness of the
skills learned through SkillMimic, we conduct three perturbation
tests on the dribble forward and pickup skills during inference: (1)
varying the ball radius from 0.5× to 1.5× the default size; (2) altering
the ball density from 0.1× to 6× the default; and (3) changing the
ball restitution from 0.5× to 1.5× the default. The success rate was
averaged across 1000 parallel environments. The quantitative results,
presented in Tab. 2, demonstrate our method’s robustness against
variations in physical properties and external disturbances.

6.3.3 Ablation on Contact Graph Reward. We conduct ablation ex-
periments on diverse datasets to comprehensively evaluate the im-
pact of Contact Graph Reward (CGR) on skill learning. Fig. 5 il-
lustrates the qualitative results of ablating CGR on the GRAB and
BallPlay-V datasets. It can be clearly observed that without CGR, the
humanoid often resorts to incorrect contacts to achieve more stable
object control, such as using its head to push the ball, clamping the
ball with its hands and legs, or using its hands to support itself on a
table for balance. These examples illustrate typical kinematic local
optima. By incorporating CGR, these local optima are effectively

eliminated, resulting in accurate interactions. Additionally, the vari-
ant SkillMimic w/o CGR in Tab. 1 presents the quantitative results of
ablating CGR on two datasets. The results show that, without CGR,
the contact error (𝐸cg) significantly increases, leading to kinematic
local optima and causing a noticeable decline in overall imitation
accuracy. These results underscore the critical importance of CGR
for learning correct interactions.

6.3.4 Ablation on Data Volume. To analyze the impact of data scale
on the performance of skills acquired through SkillMimic, we con-
duct the following ablation experiments: (1) increasing the data for a
single skill to evaluate the effect of data scale on its performance; (2)
comparing the effectiveness of learning skills through independent
training versus mixed training of multiple skills.

Data Scale Effect on a Single Skill. We select the pickup skill for ex-
periments due to its extensive semantic state transitions, as the ball
can be in various conditions, leading to diverse state transitions for
picking it up. We randomly select pickup clips from BallPlay-M to
create four pickup skill collections: one with a single clip, one with
10 clips, one with 40 clips, and one with 131 clips. For each pickup
skill collection, we train a single policy using SkillMimic for around
3.2 billion samples. During testing, balls are randomly distributed
within a circular area with a radius of 1 to 5 meters centered around
a humanoid. This setup is designed to evaluate the generalization
performance of the learned pickup skills. Fig. 8 presents the results,
where yellow dots indicate successfully picked-up balls and green
dots represent failures. The results reveal a substantial improvement
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in pickup performance with increasing data scale. This improve-
ment is attributed to the more comprehensive coverage of the state
transitions inherent in the pickup skill provided by larger datasets.
In Fig. 9, we also visualize how the pickup skill learned from 40
clips handles diverse ball states with diverse behavior. In the left
graph, a ball is placed in a random stationary position, allowing
a humanoid to run directly towards it and pick it up effortlessly.
The middle graph introduces a scenario where the ball, starting
from a random position, is given a random velocity. The humanoid
dynamically alters direction to intercept and retrieve the moving
ball. In the right graph, the ball’s velocity is increased, causing the
humanoid to miss the ball on the first attempt. Then the humanoid
quickly stands up, continues to pursue the ball, and successfully
picks it up on the second attempt. These scenarios illustrate how
extensive data collection enables the development of complex and
adaptive ball retrieval skills. These experiments demonstrate the
potential of SkillMimic to extend to learning more complex and
diverse skills by enriching the dataset. Unlike previous approaches
that required carefully designed skill-specific rewards, our purely
data-driven method achieves a high success rate with diverse and
adaptive behavior, which is particularly noteworthy.

Mixed Skill Training vs. Individual Skill Training. We conduct the
following experiment to analyze the effect between different skills
when learned together. From BallPlay-M, we select one clip for the
layup skill, one clip for the Dribble Left (DL) skill, one clip for the
Dribble Right (DR) skill, and two clips for the Dribble Forward (DF)
skill. These skills are commonly used and combined in real-world
basketball games. We first train four individual policies for each
skill independently, with each policy trained for around 0.65 billion
samples. As a control, we then train these four skills using a single
policy, and report the results when trained for around 0.65 billion
samples (the same as the individual training) and 2.6 billion samples
(4 times of the individual training, but the average sampling number
for each skill is the same as in the individual training). During testing,
we compare the success rates of executing each skill independently
and transitioning between skills. Specifically, for testing each skill,
we use the skill clips for Reference State Initialization (RSI) and
execute the corresponding skill. For testing skill switching, we use
the source skill clips for RSI and execute the target skill.

Success rates are calculated as described in Sec. 6.2. Tab. 3 presents
the quantitative results. Despite equal sampling for each skill in
both sets of experiments, mixed training shows a significant im-
provement in the success rates of individual skills and an even more
substantial improvement in skill switching. It should be noted that
while reward convergence is slightly faster in individual training,
this approach is susceptible to overfitting. For example, the DL skill
demonstrates excellent convergence of its reward, but due to the
inadequate state cycle in the reference data, the DL skill trained
independently tends to fall after a few dribbling steps, resulting in a
zero success rate in sustained operations. Conversely, mixed train-
ing allows for cross-learning from other skills, thereby significantly
enhancing the success rate of the DL skill. A similar phenomenon is
observed in skill switching, where the reference data lacks examples
of skill switches. Mixed training enables the policy to adapt to the
state distributions of all skills, facilitating zero-shot skill switching

Table 3. Success rates of skills trained independently versus jointly. DF, DL,
and DR denote Dribble Forward, Left, and Right. Ind. denotes individual
training. 1× denotes 0.65 billion training samples while 4× denotes 4 times
of that. Mixed training significantly improves both individual skill execu-
tion and skill switching, demonstrating the effectiveness of SkillMimic in
handling diverse interaction skills at once.

Succ. on Individual Skills Succ. on Skill Switching

Training DF DL DR Layup DF-DL DF-DR DF-Layup DL-DF

Ind.-1× 41.3% 0.0% 81.0% 95.5% 0.0% 5.14% 8.2% 0.09%
Mixed-1× 62.8% 4.1% 48.14% 100.0% 1.7% 8.8% 40.5% 13.5%
Mixed-4× 87.3% 67.9% 92.6% 99.9% 60.5% 14.5% 40.6% 46.3%

during tests. These findings not only demonstrate that SkillMimic
can support a single policy to learn various basketball skills but
also underscore the importance of mixed training in enhancing skill
generalization and robustness.

6.4 Evaluating Complex Basketball Tasks
By training High-Level Controllers (HLC) to leverage skills learned
via SkillMimic, humanoids can rapidly acquire complex basketball
skills with simple task rewards. We conduct experiments on the four
complex tasks described in Sec. 5.4. We employ a single skill policy
as the skill prior, trained using SkillMimic for around 4.5 billion
samples across seven skills: pickup, layup, turnaround layup, dribble
left, dribble right, dribble forward, and shot. During training, the skill
policy is kept fixed, and only the HLC is trained. The HLC operates
at one-third the control frequency of the skill policy, i.e., 20 Hz. For
tasks such as throwing, heading, and circling, we train for around
0.4 billion samples. For the more challenging scoring task, we train
for around 1.2 billion samples. To objectively evaluate our method’s
performance, we compared it against two baseline methods: (1)
learning from scratch using PPO, and (2) learning with motion
priors using ASE [Peng et al. 2022]. The low-level controller of ASE
is trained using the same data and training samples as our skill
policy. For task training, all methods were trained using identical
task rewards and simulation steps for fair comparisons.

Fig. 10 (a) showcases an example of manually controlling the pre-
trained skill policy to perform skill switching. Specifically, we first
execute the shooting skill, then switch to the pickup skill as the ball
falls, and finally switch to the turnaround layup skill after retrieving
the ball. Manual control, however, often fails to achieve precise
goals, such as scoring a layup. Besides, since the success rate of skill
switching is not 100%, effective skill switching requires switching
within appropriate states, making manual control prone to potential
failure. However, training aHLC tomanage skill switching addresses
these issues effectively.

Fig. 10 (b) shows several trajectories of the HLC performing skill
controls to accurately deliver the ball to the target basket. Tab. 4
shows that our method achieves a layup success rate of up to 80.25%.
Fig. 10 (c) presents a top-down view of the HLC controlling the
humanoid to dribble the ball to target locations. Fig. 10 (d) depicts a
top-down view of the HLC guiding the humanoid to dribble around
a point with varying radii. As shown in Tab. 4, the success rates for
the heading and circling tasks are 93.04% and 79.92%, respectively.
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(a) Manual Control (b) Scoring

(c) Heading (d) Circling

Fig. 10. We train a single policy under a unified configuration to acquire various skills. These skills can be flexibly switched, as illustrated in (a), where yellow
denotes shot, blue denotes pickup, and green denotes turnaround layup. Complex high-level tasks can be easily achieved by training a high-level controller
(HLC) to manage skill switching: (b) scoring from random positions; (c) dribbling to target locations; and (d) dribbling with different radii.

Throwing Heading

Circling Scoring

Fig. 11. Learning curves of different methods on 4 complex basketball tasks.
On these challenging tasks, simple goal-related task rewards struggle to
converge when training from scratch (PPO) or using motion priors (ASE),
whereas our method achieves rapid convergence by using skill prior.

Table 4. Success rates on 4 complex basketball tasks. Both PPO (learn from
scratch) and ASE (using motion prior) fail to converge on these four challeng-
ing tasks. In contrast, leveraging skill priors acquired through SkillMimic,
our method effectively learns these difficult tasks.

PPO ASE Ours

Task Succ ↑ Succ ↑ Succ ↑
Heading 0.70% 0.19% 93.04%
Circling 11.14% 4.37% 79.92%
Throwing 0.00% 0.00% 93.40%
Scoring 0.00% 0.00% 80.25%

These results highlight the extensive applicability of skill priors
acquired through SkillMimic.
As shown in Fig. 11 and Tab. 4, both PPO and ASE exhibit poor

performance in terms of both success rate and reward convergence.
This is because the simple goal-defined task rewards are too difficult
to learn for these complex basketball tasks. Like how human athletes,
after mastering a wide array of basketball skills, can quickly adapt
to new tasks, utilizing the pre-trained skill policy as a skill prior
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greatly simplifies the learning of complex tasks and results in rapid
training convergence.

7 DISCUSSION AND FUTURE WORK
We presented a novel framework that learns various basketball
skills in a purely data-driven manner. The proposed Contact Graph
(CG) reward plays a critical role in human-object interaction (HOI)
imitation, yielding significant improvements over traditional kine-
matic imitation rewards, particularly on data with kinematic errors.
Thanks to a series of innovations, our approach is applicable to
various basketball skills, enabling a single policy to master multi-
ple skills and achieve zero-shot skill switching. Additionally, our
method demonstrates a clear data scale effect, where the capabil-
ity of the learned skills improves as the amount of data increases.
We have also provided two basketball datasets to facilitate further
research within the community. We believe this work paves an excit-
ing new direction for humanoid skill learning and has the potential
to extend to more general interactive skills.

Despite these merits, our method faces several limitations. Firstly,
exploring more general skill learning within a single policy, such
as household tasks or other types of sports, presents challenges in
handling generalization across different objects, like varying object
shapes. Moreover, perceiving multiple objects simultaneously re-
quires a more general environmental perception approach, rather
than directly obtaining privileged information for each object. Sec-
ondly, similar to previous works [Peng et al. 2022, 2021], our method
predicts the next action based solely on the current moment without
considering historical information. This can lead to convergence
issues when learning from data with conflicting state transitions,
such as a person standing for a long time before picking up a ball,
where the data includes both standing-to-standing and standing-
to-picking transitions, making it impossible for the policy to learn
both transitions. In this work, we address this issue by dividing the
conflicting data into different skills. In the future, we hope for more
effective solutions, such as incorporating historical observations or
learning automatic data segmentation and encoding.
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A HYPERPARAMETERS
The hyperparameter configurations employed during the pre-training
phase of the skill policy are detailed in Tab. 5, while the hyperpa-
rameters utilized for the training of the high-level controller are
presented in Tab. 6. Additionally, Tab. 7 displays the hyperparameter
settings for all sub-rewards involved.

B DETAILS OF VARIANT MODELS

B.1 Variants in Skill Learning
In the main paper, we developed multiple variants to enable thor-
ough ablation studies and comparative analysis in skill learning. As
a control measure, these variants are identical in all respects except
for the variations in their reward functions. We will next delineate
the specific differences in the reward functions of these variants.
The symbols used for the sub-reward functions below are consistent
with those in the main text. Unless specified, the hyperparameters
of these sub-rewards are the same, as shown in Tab. 7.

SkillMimic-DM. The reward function is

𝑟𝑡 = 𝑟
𝑝
𝑡 + 𝑟𝑟𝑡 + 𝑟𝑟 𝑣𝑡 + 𝑟𝑜𝑡 . (14)

The hyperparameters of these sub-rewards are shown in Tab. 7.

SkillMimic-AMP. The reward function is

𝑟𝑡 = −log (1 − 𝐷 (𝒔𝑡 , 𝒔𝑡+1)) , (15)

where 𝒔 represents the HOI state, 𝐷 denotes the discriminator.

SkillMimic w/o Multiplication. The reward function is

𝑟𝑡 = 𝑟𝑏𝑡 + 𝑟𝑜𝑡 + 𝑟𝑟𝑒𝑙𝑡 + 𝑟𝑟𝑒𝑔𝑡 + 𝑟𝑐𝑔𝑡 . (16)

SkillMimic w/o CGR. The reward function is

𝑟𝑡 = 𝑟𝑏𝑡 ∗ 𝑟𝑜𝑡 ∗ 𝑟𝑟𝑒𝑙𝑡 ∗ 𝑟𝑟𝑒𝑔𝑡 . (17)

B.2 Variants in High-Level Tasks
To evaluate the performance of our method on high-level tasks, we
established two sets of experiments for comparison: one involving
training from scratch and the other utilizing ASE. For ASE, we
trained a Low-Level Controller (LLC) using the same dataset as our
skill policy, employing the following reward function:

𝑟𝑡 = −log (1 − 𝐷 (𝒔𝑡 , 𝒔𝑡+1)) + 𝛽 log 𝑞 (𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1) . (18)

where 𝒔 represents the body-only state (object is not considered), 𝐷
denotes the discriminator, 𝑞 denotes the encoder and 𝒛 represents
the latent code. The LLC can effectively generate body motions
similar to those in the dataset.
Subsequently, we trained a High-Level Controller (HLC) using

the same task reward as our method. The network architecture of
this HLC is identical in size to that used in our approach; however,
the HLC of ASE outputs continuous latent variables, whereas our
HLC outputs discrete skill conditions.

Table 5. Hyperparameters for training skill policy.

Parameter Value
dim(𝒄) Skill Embedding Dimension 64
Σ𝜋 Action Distribution Variance 0.055
Samples Per Update Iteration 65536
Policy/Value Function Minibatch Size 16384
𝛾 Discount 0.99
Adam Stepsize 2 × 10−5
GAE(𝜆) 0.95
TD(𝜆) 0.95
PPO Clip Threshold 0.2
𝑇 Episode Length 60

Table 6. Hyperparameters for training high-level controller.

Parameter Value
Σ𝜋 Action Distribution Variance 0.055
Samples Per Update Iteration 65536
Policy/Value Function Minibatch Size 16384
𝛾 Discount 0.99
Adam Stepsize 2 × 10−5
GAE(𝜆) 0.95
TD(𝜆) 0.95
PPO Clip Threshold 0.2
𝑇 Episode Length 800

Table 7. Hyperparameters of Sub-Rewards. SM denotes SkillMimic, and
SM-DM denotes SkillMimic with DeepMimic-style rewards.

Parameter SM SM-DM
𝜆𝑝 Sensitivity of Key Body Position Error 20 20
𝜆𝑟 Sensitivity of DOF Rotation Error 20 2
𝜆𝑝𝑣 Sensitivity of Key Body Velocity Error 0 −
𝜆𝑟 𝑣 Sensitivity of DOF Rotation Velocity Error 0 0.1
𝜆𝑜𝑝 Sensitivity of Object Position Error 20 20
𝜆𝑜𝑟 Sensitivity of Object Rotation Error 0 −
𝜆𝑜𝑝𝑣 Sensitivity of Object Velocity Error 0 −
𝜆𝑜𝑟𝑣 Sensitivity of Object Angular Velocity Error 0 −
𝜆𝑟𝑒𝑙 Sensitivity of Relative Position Error 20 −
𝝀𝒄𝒈 [0] Sensitivity of Ball-Hands Contact Error 5 −
𝝀𝒄𝒈 [1] Sensitivity of Ball-Body Contact Error 5 −
𝝀𝒄𝒈 [1] Sensitivity of Body-Hands Contact Error 5 −
𝜆𝑟𝑒𝑔 Sensitivity of Velocity Regularization 10−12 −
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